
Chapter 10

Phosphorus Nutrition: Rhizosphere Processes,

Plant Response and Adaptations

Timothy S. George, Ann -Mari Fransson, John P. Hammond,

and Philip J. White

10.1 Introduction

Phosphorus (P) is an essential element required for cellular function and when

deficient has a significant impact on plant growth and fecundity. Poor availability of

P in soil and consequent P deficiency represents a major constraint to crop produc-

tion globally (Runge-Metzger 1995). Soil P status is also a key factor that controls

the competitive dynamics and species composition in different natural ecosystems

(McGill and Cole 1981; Attiwill and Adams 1993), and thus may have significant

impact on biodiversity (Wassen et al. 2005). Many plant species have evolved in

P-limited environments and, as a consequence, are known to possess a number of

adaptive features that can enhance the acquisition of P from soil (Raghothama

1999; Vance et al. 2003; Richardson et al. 2007). Most plants have evolved to

respond to P starvation by increasing the ability of their root systems to acquire P

from the soil (White et al. 2005; Hammond and White 2008; Lynch and Brown

2008; White and Hammond 2008; Fang et al. 2009). Plant root cells take up P as

orthophosphate (H2PO4
�, abbreviated here as Pi), whose concentrations in the soil

solution is extremely low (<10 mM). The mass flow of Pi in the soil solution is

insufficient to supply the P requirements of a plant (Kirkby and Johnston 2008).

Hence, roots must proliferate throughout the soil to acquire sufficient P for plant

nutrition. Although some soil P is present as labile Pi bound to soil particles, most is

present as sparingly soluble inorganic salts, such as calcium (Ca) phosphate in
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alkaline soils or aluminium (Al) and iron (Fe) phosphates in acidic soils, or as

complex organic compounds in soil organic material or soil organisms (Hinsinger

2001; Oberson and Joner 2005; Turner 2007; Kirkby and Johnston 2008). Organic P

generally accounts for around 50% of soil P, and is largely comprised of monoesters

with lesser amounts of diesters and phosphonates (Newman and Tate 1980; Hawkes

et al. 1984; Condron et al. 1990). In order to be available to plants, inorganic P must

be either desorbed or solubilised, and organic P must be mineralised to release Pi.

Once in the soil solution, Pi is acquired rapidly by plant roots such that its

concentration in close proximity to the root surface is estimated to be in the order

of ~0.05 to 0.2 mM (Barber 1984), which is significantly less than elsewhere in the

soil environment, where soil solution concentrations are typically in the range of

1–5 mM (Bieleski 1973). Slow Pi diffusion through soil to the roots is the ultimate

limitation to P supply to the root surface, and can thus restrict P acquisition.

The conserved responses of plants to P starvation that increase P acquisition

include:

1. Acidification of the rhizosphere and secretion of low molecular weight organic

anions and phosphatase enzymes into the soil to mobilize Pi from inorganic and

organic P sources (Marschner 1995; Hinsinger 2001; Jones et al. 2003; Delhaize

et al. 2007; Jain et al. 2007b; George and Richardson 2008).

2. Investment of a greater proportion of plant biomass in the root system, and

alterations in the morphology of the root system to enable greater exploration of

the soil volume and the exploitation of localized patches of high Pi availability

(White et al. 2005; Hermans et al. 2006; Hammond and White 2008; Lynch and

Brown 2008).

3. Increasing the capacity of root cells to take up Pi, thereby reducing Pi concen-

trations in the rhizosphere, increasing the rate of diffusion of Pi towards the

rhizosphere and stimulating the release of Pi from labile sources (Marschner

1995; Bucher 2007; Jain et al. 2007b).

In addition, most plants foster symbiotic relationships with mycorrhizal fungi to

increase their ability to explore the soil volume and mobilize P from remote

inorganic and organic sources (Bucher 2007; Smith and Read 2007; Jansa et al.

2011). All these responses are coordinated by a small number of regulatory systems

controlled by both the P status of the shoot and Pi availability in the rhizosphere

(White et al. 2005; Amtmann et al. 2006; White and Hammond 2008; Hammond

and White 2008).

In this chapter, we will discuss the current state of knowledge regarding (1) how

plants react to limited P availability by changing their physiological response in

root growth and rhizosphere biochemistry traits, (2) how they coordinate this

response to P limitation, and (3) how they respond to the re-supply of P once P

becomes available again. Gaps in knowledge will be identified and priorities for

future research will be discussed.
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10.2 Root and Rhizosphere Responses of Plants to P Deficit

10.2.1 Morphological Adjustment of Roots to P Deficiency

Most species partition a greater proportion of their total dry matter into root growth

when grown under P deficiency (Bradshaw et al. 1960; Hill et al. 2006). A number

of studies indicate that the capacity to adjust root mass ratio in favour of root growth

is expressed most effectively by species that have evolved in fertile soils (Christie

and Moorby 1975; Boot and Mensink 1990), and consequently this adjustment is

considered characteristic of plants that can compete effectively in high-nutrient

environments (Chapin 1980). Many species adjusting to low P conditions concur-

rently increase specific root length (SRL) to achieve longer or more branched roots

per unit of root dry matter (Christie 1975; Fitter 1985; Hill et al. 2006) and increase

their root hair length and density (Itoh and Barber 1983). Increased SRL can be

achieved by reducing root mass density (Fitter 1985; Fan et al. 2003) and/or by

decreasing root diameter (Hill et al. 2006). In addition, a common physiological

response is root agravitropism or topsoil foraging, putting roots where concentra-

tions of P are relatively large (Lynch 2005). The formation of specialised root

structures that increase P acquisition is an alternative means by which plants adjust

to low soil P levels. Most notable of these are the cluster (or proteoid) roots

(dense bottle-brush-like clusters of rootlets) formed on white lupin (Lupinus
albus) (Gardner et al. 1981; Dinkelaker et al. 1995; Keerthisinghe et al. 1998;

Neumann et al. 1999). The formation of cluster roots by white lupin is induced and

regulated by the P status of the shoot rather than the P concentration of the root

system or the soil solution (Keerthisinghe et al. 1998; Shane et al. 2003; Shen et al.

2005). In particular, cluster roots significantly increase root-surface area and thus

soil contact, and are usually found on species that are either non-mycorrhizal or

weakly mycorrhizal (Skene 1998).

10.2.2 Formation of Root Hairs in Response to P Deficit

Root hair development may be sparse in high-P conditions, but both density and

length increase when plants are grown on a low-P supply (Bates and Lynch 1996;

Gahoonia and Nielsen 1997), thus increasing the capacity for P acquisition (Itoh

and Barber 1983; F€ohse et al. 1991). The benefit of increased root hair density

reaches a plateau when the P-depletion zones around each root hair begin to

overlap, with the optimal relationship between root hair density and length depen-

dent on the P-diffusion coefficient of the soil (Ma et al. 2001). In a study of ten

grassland species, Hill et al. (2006) concluded that root-morphology adjustments

helped plants to maintain root length under a range of low-P conditions, conse-

quently improving the potential for P uptake from P-deficient soil. However, the

intrinsic morphological characteristics of each species (particularly an extensive,
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fine root system), as opposed to the ability to adjust root morphology, was the most

important determinant of whether a plant had a low P fertiliser requirement for

maximum growth rate (Hill et al. 2006).

The use of root hair mutants has demonstrated that the presence of root hairs

increases the root soil contact, evidenced by enhanced rhizosheath (soil adhering to

roots) production (Haling et al. 2010; Brown et al. 2010) and this, in association

with the consequent enhanced root surface area, has been demonstrated to enhance

tolerance of Al-toxic (Haling et al. 2010) and P-deficient conditions (Brown et al.

2010). The major mechanism by which root hairs are beneficial to P acquisition is

likely to be the greater volume of soil exploited by long root hair varieties, as

evidenced by differential zones of depletion around roots of various barley root-hair

mutants (Fig. 10.1) (Gahoonia and Nielsen 1997).

10.2.3 Release of Extracellular Organic Anions

Many studies have shown that organic anions modify the chemistry of the rhizo-

sphere and mobilise various forms of inorganic and organic P. This is achieved by

an increase in the dissolution of sparingly soluble P minerals, reduced sorption of P

by alteration of the surface characteristics of soil particles, desorption of Pi from

sorption sites (ligand exchange and ligand dissolution), and through the chelation of

cations (e.g. Al and Fe in acidic soils or Ca in alkaline soils) that are commonly

associated or complexed with Pi in soil (Bar-Yosef 1991; Jones and Darrah 1994;

Lan et al. 1995; Jones 1998). Organic anions may also promote the growth of

rhizosphere microorganisms that improve plant P acquisition. The importance of
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Fig. 10.1 Depletion of NaHCO3-extractable inorganic P (mmol P/kg soil) from the rhizosphere of

two barley cultivars (Hordeum vulgare cvs Zita and Salka) with different root hair morphologies.

The cultivars are compared to an unplanted control soil (from Gahoonia and Nielsen 1997)
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organic anions in increasing the availability of organic P, and its subsequent

mineralisation by phosphatases, has also been identified recently (Jones 1998;

Otani and Ae 1999; Hayes et al. 2000a; Hens et al. 2003; Li et al. 2003).
It is evident that exudation of organic anions from plant roots is facilitated by

transport proteins (Neumann et al. 1999; Ryan et al. 2001). At concentrations

commonly found in the rhizosphere (10–100 mM; Jones 1998) citrate and oxalate

have a greater potential for P mobilisation than other organic anions. In fact, high

rates of citrate exudation from cluster roots of white lupins are associated with a

large capacity for P mobilisation in soil by this species (Vance et al. 2003;

Richardson et al. 2007). Other plant species vary in the nature and amounts of

organic anions they exude from roots (Veneklaas et al. 2003; Wouterlood et al.

2004; Pearse et al. 2006). But, generally increased organic anion efflux from

roots stimulated by P-deficient conditions (Hedley et al. 1982; Lipton et al. 1987;

Hoffland et al. 1989; Kirk et al. 1999), is a common phenomenon.

The heterologous expression of genes for enzymes involved in organic anion

synthesis in roots has been investigated as a means to increase exudation of organic

anions from roots. Overexpression of a bacterial gene encoding citrate synthase

(CS) in tobacco (Nicotiana tabacum) has been reported to increase citrate efflux

from roots of transgenic lines compared to control plants (de la Fuente-Martı́nez

et al. 1997). However, using similar gene constructs and in some cases the same

transgenic lines, Delhaize et al. (2001) could not confirm these results. Moreover,

tobacco plants that overexpressed a tobacco CS, or were downregulated for iso-

citrate dehydrogenase expression, showed no significant increase in citrate efflux

even though in some cases the plants had greater internal citrate concentration

(Delhaize et al. 2003). Notwithstanding this, it is apparent that there is potential to

enhance organic acid exudation by targeting the citrate synthesis biosynthetic

pathway. Overexpression of a plant gene for mitochondrial CS in Arabidopsis
thaliana enhanced citrate efflux, with an associated small improvement in

P acquisition (Koyama et al. 2000).

Genes that encode channels involved in the transport of organic anions may be

another target for a gene technology approach to improving tolerance to P deficit.

Citrate-permeable channels in the plasma membrane of cluster roots of white lupin

have been identified (Zhang et al. 2004), and a gene encoding a malate channel has

been cloned from wheat (Sasaki et al. 2004). When expressed in transgenic barley

(GP-ALMT1), this gene (TaALMT1) resulted in increased exudation of malate,

albeit in an Al-activated manner (Delhaize et al. 2004), and has been demonstrated

to be beneficial to the P nutrition of plants when grown in acidic soils (Fig. 10.2)

(Delhaize et al. 2009).

10.2.4 Release of Extracellular Phosphatase

A number of studies have demonstrated significant rates of organic P mineralisation

in proportion to soil phosphatase activity (Trasar-Cepeda and Carballas 1991;
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Fig. 10.2 Expression of the wheat aluminium resistance gene (TaALMT1) in transgenic barley

enhances phosphorus uptake per unit root and reduces the root/shoot ratios of plants grown on an

acid soil with a range of phosphorus supplies. Effect of phosphorus supply on phosphorus uptake
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Lopez-Hernandez et al. 1998; Oehl et al. 2001; George et al. 2002). In natural

ecosystems, mineralisation of soil organic P is thought to provide the major

proportion of P to plants (Fox and Comerford 1992; Polglase et al. 1992). Similarly,

in organic-based farming systems, and where green-manure crops are used for

fertilisation, high rates of organic P cycling have been observed (Oberson et al.
1996, 2001; Nziguheba et al. 1998; Maroko et al. 1999; Oehl et al. 2004).

The hydrolysis of organic P is mediated by the action of phosphatase enzymes in

the extracellular environment, a process that is necessary for the subsequent uptake

of Pi by plant roots (see Nannipieri et al. 2011). At present there is no evidence for

direct uptake of dissolved organic P compounds by plants, although organic P

substrates may be hydrolysed within the root apoplast (Duff et al. 1994; George
et al. 2008). Extracellular phosphatase activity of plant roots is induced under

conditions of P deficiency and is associated with either root cell walls (McLachlan

1980; Dracup et al. 1984; Barrett-Lennard et al. 1993; Hayes et al. 1999; Hunter and
McManus 1999) or is released directly into the rhizosphere (Tarafdar and Claassen

1988; Tadano et al. 1993; Li et al. 1997; Gaume et al. 2001). The cloning of

genes encoding extracellular phosphatases from A. thaliana (Haran et al. 2000)
and L. albus has provided direct evidence for extracellular secretion and regulation

of phosphatase expression in response to P deficiency (Wasaki et al. 2000; Miller

et al. 2001).
Extracellular secretion of phosphatases from roots is correlated with the ability

of plants to obtain P from organic P sources when grown under sterile conditions

(Tarafdar and Claassen 1988; Hayes et al. 2000b; Richardson et al. 2000; George
et al. 2008). For example, wheat and a range of pasture species are able to utilise P

from various monoester (e.g. glucose-6-phosphate) and diester (e.g. ribonucleic

acid) forms, but show limited capacity to acquire P directly from myo-inositol
hexakisphosphate (Richardson et al. 2000; George et al. 2008), despite inositol

phosphates being an abundant form of organic P in many soils. It is likely that the

biological importance of the different forms of organic P will be dictated by their

turnover rates. Direct hydrolysis of organic P and subsequent utilisation of the

mineralised Pi by roots has also been demonstrated in soil-grown plants. Depletion

of various pools of extractable organic P from the rhizosphere has been linked with

greater phosphatase activities around plant roots (Chen et al. 2002; George et al.

�

Fig. 10.2 (continued) by roots (a), root/shoot ratios (b), and shoot phosphorus concentrations

(c) of transgenic barley (GP, triangles) and transgenic barley expressing TaALMT1 (GP-ALMT1,
circles) grown on an unamended acid ferrosol (open symbols) or on the same soil that had been

limed (closed symbols). Phosphorus uptake per unit root was calculated from total shoot phospho-

rus only, because the phosphorus contents of roots could not be accurately determined because

of adhering soil. Plants were harvested 26 days after sowing and the data for each show the

treatment means (n ¼ 4) and least-significant difference (LSD) (P ¼ 0.05; untransformed data).

Asterisks indicate where the means of the genotypes grown on the acid soil with a particular

phosphorus treatment differed by more than the LSD (untransformed data), and crosses indicate
where additional differences between genotypes were apparent using log10-transformed data

(from Delhaize et al. 2009)

10 Phosphorus Nutrition: Rhizosphere Processes, Plant Response and Adaptations 251



2002, 2006). However, the relative contribution of extracellular phosphatases

derived from roots and from microorganisms in the utilisation of soil organic P is

unclear because the numbers and activity of bacteria and fungi are greater within

the rhizosphere than in the bulk soil (Chen et al. 2002; Richardson et al. 2005). In
addition, there is some evidence that phosphatases derived from soil fungi have a

greater affinity for organic P compounds compared to phosphatases derived from

plant roots (Tarafdar et al. 2001). Either way, it is evident that the mineralisation of

organic P occurs in the rhizosphere and could make an important contribution to the

orthophosphate requirement of plants for growth.

Research efforts have been focussed on improving the ability of plants to acquire

P directly from common forms of soil organic P, such as inositol phosphates. A

number of studies have developed transgenic plants with heterologous expression

of microbial phytases (Richardson et al. 2001; Zimmermann et al. 2003; Lung et al.

2005; Xiao et al. 2005). Transgenic plants that produce microbial phytase and

release it from their roots have novel ability to hydrolyse P from myo-inositol
hexakisphosphate and, when grown under controlled conditions, showed enhanced

growth and P nutrition (Fig. 10.3) (Richardson et al. 2001; Mudge et al. 2003;

Trifolium
subterraneum

Shoot dry weight
(mg/plant)

Shoot phosphorus
(µg P/shoot)

Exuded root
phytase activitya

(nKat/g root dry wt)

−

28.1 40.7 51.8 47.9

48.3 103.5 299.0 305.3

1.3 107.9 −

aActivity for wild-type plants was 0.6 nKat/g root dry weight.

ex::phyA ex::phyANull segregantex::phyA

No P
myo-Inositol hexakisphosphate

(sodium-phytate)
Na2HPO4

Fig. 10.3 Growth, phosphorus nutrition and activity of phytase exuded from the roots of trans-

genic Trifolium subterraneum. The images show plants that release the Aspergillus niger phytase
(ex::phyA) as an extracellular enzyme and the corresponding null-segregant transgenic control

line. Plants were grown for 28 days in sterile agar either without added phosphorus (no P) or with

phosphorus supplied as sodium phytate (myo-inositol hexakisphosphate) or disodium phosphate

(Na2HPO4) at 0.9 mM (with respect to phosphate) (taken from George et al. 2004)
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Zimmermann et al. 2003; George et al. 2004). However, when grown in a range of

soils, these plants have generally shown limited capacity to access additional P over

that of control plants (George et al. 2004, 2005b). These results highlight the

complexity inherent in attempting to improve multimechanistic tolerance traits by

a single gene approach. Whilst potential exists for manipulating P-use efficiency at

a genetic scale, success will often be limited by poor understanding of the control of

the mechanisms imposed by different soil environments.

10.3 Coordinating Plant Responses to Variations in P Supply

In P-replete plants, small metabolites, nucleic acids and phospholipids contribute

approximately equally to leaf P content (Marschner 1995; D€ormann and Benning

2002; White and Hammond 2008). When plants lack sufficient P, they restrict their

use of P to essential cellular functions and improve the ability of their root systems

to acquire P from the soil.

Many of the responses of plants to P starvation appear to be initiated, or

modulated, by a decrease in the delivery of Pi to the shoot and the consequent

reduction in the Pi available for shoot metabolism (Fig. 10.4, response 1). This has a

direct effect on photosynthesis, glycolysis and respiration, which is reinforced by

transcriptional reprogramming (Plaxton and Carswell 1999; Hammond et al. 2003,
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Fig. 10.4 Regulatory networks coordinating plant responses to variations in P supply. Numbers
indicate different plant responses and are explained in the text (from White and Hammond 2008)
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2005; Misson et al. 2005; Hermans et al. 2006; Wasaki et al. 2006; Morcuende et al.

2007; White and Hammond 2008). The changes in carbohydrate metabolism result

in the accumulation of organic acids, starch and sucrose in leaves of P-starved

plants (Fig. 10.4, response 2) (Hermans et al. 2006; Morcuende et al. 2007).

Metabolism is rerouted by employing reactions that do not require Pi or adenylates

and, under severe P starvation, intracellular phosphatases and nucleases are pro-

duced to remobilize P from cellular metabolites and nucleic acids (Plaxton and

Carswell 1999; Hammond et al. 2003; Wasaki et al. 2006; Morcuende et al. 2007;

M€uller et al. 2007).
Increased leaf sucrose concentrations lead indirectly to (1) a reduction in photo-

synthesis through decreased expression of genes encoding many photosystem

subunits and small subunits of RuBisCo (Lloyd and Zakhleniuk 2004; Amtmann

et al. 2006; Hermans et al. 2006; Rook et al. 2006; Morcuende et al. 2007), (2) an

increase in leaf sulfolipid and galactolipid concentrations through the upregulation

of genes involved in their biosynthesis (D€ormann and Benning 2002; Hammond

et al. 2003; Benning and Ohta 2005; Misson et al. 2005; Franco-Zorrilla et al. 2005;

Gaude et al. 2008), and (3) the production of anthocyanins through a transcriptional

cascade involving the transcription factors TTG1-TT8/EGL3-PAP1/PAP2

(Fig. 10.4, response 3) (Lloyd and Zakhleniuk 2004; Teng et al. 2005; Amtmann

et al. 2006; Solfanelli et al. 2006). An increased leaf sucrose concentration also

results in the upregulation of genes encoding transport proteins delivering organic

acids and sucrose to the phloem, which facilitates the movement of these com-

pounds to the root (Fig. 10.4, response 4) (Hermans et al. 2006). Details of the genes

and transcription factors identified in genomics studies can be found in a range

of databases that are exemplified by the Database of Arabidopsis Transcription

Factors (Guo et al. 2005).

One consequence of the increased delivery of organic acids and sucrose to plant

roots is an increase in the root/shoot biomass ratio (Fig. 10.4, response 5) (Hermans

et al. 2006; Hammond and White 2008). In addition, the sucrose delivered to the

root acts as a systemic signal to initiate changes in gene expression that alter root

biochemistry and the morphology of the root system (Franco-Zorrilla et al. 2005;

Liu et al. 2005; Amtmann et al. 2006; Hermans et al. 2006; Karthikeyan et al. 2007;

Tesfaye et al. 2007; Hammond and White 2008). Increased root sucrose concentra-

tions appear to upregulate genes encoding riboregulators, Pi transporters, RNases,

phosphatases and metabolic enzymes in combination with the PHR1 transcriptional

cascade (Fig. 10.4, response 6), whereas its effects on lateral rooting occur through

modulation of auxin transport (Fig. 10.4, response 7) (Jain et al. 2007a; Pérez-

Torres et al. 2008) and those on root hair development are contingent upon changes

in auxin transport and the local production of ethylene (Fig. 10.4, response 8) (Jain

et al. 2007a).

The PHR1 protein is a MYB transcription factor that binds to an imperfect-

palindromic sequence (P1BS; GNATATNC) that is present in the promoter regions

of many genes whose expression responds to P starvation. These include genes

encoding transcription factors, protein kinases, Pi transporters, RNases, phospha-

tases, metabolic enzymes and enzymes involved in the synthesis of sulfolipids and
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galactolipids (Fig. 10.5) (Rubio et al. 2001; Hammond et al. 2004; Franco-Zorrilla

et al. 2004; Misson et al. 2005; Jain et al. 2007b; Fang et al. 2009; Lin et al. 2009).

The expression of PHR1 appears to be constitutive, but the PHR1 protein is targeted
by a small ubiquitin-like modifier (SUMO) E3 ligase (SIZ1), whose expression is

increased by P starvation (Miura et al. 2005). The activity of SIZ1 acts as a negative

regulator of plant responses to P starvation (Miura et al. 2005). The PHR1-mediated

increase in Pi transport is contingent upon the activity of PHF1, an ER protein that

facilitates the trafficking of PHT1-family Pi transporters, whose expression is upre-

gulated upon P starvation (González et al. 2005). Amongst the targets of the PHR1

protein aremembers of themiR399microRNA family and the SPX gene family (Bari

et al. 2006; Franco-Zorrilla et al. 2007; Nilsson et al. 2007; Lin et al. 2009). The

expression ofmiR399s is specifically and rapidly upregulated by P starvation (Chiou

2007). The target for miR399s is AtUBC24, which is downregulated during P

starvation. This gene encodes the ubiquitin E2 conjugating enzyme responsible for

the pho2 mutant phenotype, which is thought to downregulate the transcription of a

subset of P-starvation-responsive genes through intermediary transcription factors

(Chiou 2007; Fang et al. 2009). Expression of AtUBC24 in roots appears to be

regulated systemically by shoot P status and the translocation of miR399s in the

phloem (Buhtz et al. 2008; Lin et al. 2008; Pant et al. 2008). The rate of their

translocation in the phloem is likely to be influenced indirectly by sucrose loading

and unloading in the shoot and root, respectively. Members of the TPSI1/Mt4/At4
family of non-coding transcripts, whose expression is rapidly and specifically

induced in response to P starvation, appear to bind and sequester miR399s thereby

attenuating miR399-mediated transcriptional responses to P starvation (Franco-

Zorrilla et al. 2007). In Arabidopsis, the expression of AtSPX1 and AtSPX3 are

greatly increased by P starvation (Duan et al. 2008). Increased expression of

PHR1

SIZ1

Phosphate 
Transporters

Phosphatases 
& RNases

Metabolic 
Enzymes

At4

SPX3

SPX1

UBC24

miR399

Fig. 10.5 Gene Regulatory networks impacting on PHR1-mediated acclimatory responses to P

starvation. Arrows indicate positive regulation. Blunt-ended lines indicate negative regulation
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AtSPX1 upregulates transcription of several genes, including PAP2, RNS1 and ACP5
(Duan et al. 2008). Increased expression of AtSPX3 occurs upon prolonged P

starvation and appears to act in feedback regulation of plant responses to P starvation

by downregulating the expression of AtSPX1, At4 and genes encoding several Pi

transporters, RNases and phosphatases (Duan et al. 2008).

Crosstalk between local and systemic signals (including auxin, ethylene, cytoki-

nin and sucrose) controls the remodelling of root system morphology in response to

P starvation (White et al. 2005; Amtmann et al. 2006; Jain et al. 2007a; Karthikeyan

et al. 2007; Hammond and White 2008; White and Hammond 2008; Fang et al.

2009). The growth rate of primary roots is reduced in P-starved plants by a

reduction of meristem activity, which is initiated directly by contact of the root

cap with media lacking Pi and requires the activity of multicopper oxidases

(Ticconi et al. 2004; Sánchez-Calderón et al. 2006; Svistoonoff et al. 2007; Jain

et al. 2007a; Fang et al. 2009). The proliferation of lateral roots of P-starved plants

in regions of increased Pi availability is also contingent upon growth of the primary

root apex through these regions (Drew 1975), but appears to be initiated by changes

in auxin transport and perception (Nacry et al. 2005; Sánchez-Calderón et al. 2006;

Jain et al. 2007a; Hammond andWhite 2008; Pérez-Torres et al. 2008), with greater

sucrose availability increasing the responsiveness to auxin (Nacry et al. 2005; Jain

et al. 2007a). Specifically, the TIR1 gene, which encodes the auxin receptor

component of the ubiquitin protein ligase complex SCFTIR1, is upregulated by P

starvation (Pérez-Torres et al. 2008). The upregulation of TIR1 results in the

degradation of AUX/IAA auxin response repressors, allowing the expression of

ARF transcription factors, such as ARF19, to modulate the expression of genes that

enable the initiation and emergence of lateral roots without increasing root auxin

concentrations (Pérez-Torres et al. 2008). The initiation of lateral roots is also

promoted by reduced cytokinin concentrations in roots of P-deficient plants,

which appears to be a secondary consequence of the crosstalk between sugar and

local P-signalling cascades (Franco-Zorrilla et al. 2005). This phenomenon is

comparable to the proliferation of specialised cluster roots in regions of local Pi

enrichment observed in diverse non-mycorrhizal plant species when they lack

sufficient P (Lamont 2003; Lambers et al. 2006; Vance 2008). The initiation and

elongation of root hairs are stimulated by locally elevated concentrations of auxin

and ethylene, and both are stimulated when more sucrose is available to the roots

(Jain et al. 2007a; Hammond and White 2008). Finally, the topsoil-foraging pheno-

type of P-deficient plants appears to be modulated primarily by the sensitivity of

root gravitropism to ethylene, which increases with P starvation (Basu et al. 2007).

10.4 Response of Plants to P Re-supply

A root growing in soil is likely to find sites with a high concentration of potentially

available P and sites with almost no P (Hodge 2009), though how the plant senses

and reacts to this is yet unknown. There will be microsites with active microflora
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and/or microflora where competition for nutrients is great. An individual root will

then experience local P competition, P-limiting and P-sufficient conditions at

different times.

As highlighted above, the physiological state of a P-deficient plant is quite

specific and the response is multigenic in nature with, for example, over 1,000

genes being differentially regulated under these conditions in Arabidopsis (Wu

et al. 2003; Hammond et al. 2003; Morcuende et al. 2007). Under conditions of P

starvation, plants have increased root/shoot biomass ratio (Lynch 1995), alteration

of root architecture (Williamson et al. 2001; López-Bucio et al. 2000), many more

lateral roots and long root hairs (Bates and Lynch 1996). Also high-affinity P

transporters are more abundant (Mudge et al. 2002; Smith et al. 2003) and organic

acids and phosphatases are synthesized and secreted (Raghothama 1999; del Pozo

et al. 1999; Li et al. 2002). There are fewer P-containing metabolites (Zrenner et al.

2006), phospholipids are replaced in part by sulfolipids and galactolipids (D€ormann

and Benning 2002; Kelly et al. 2003), and cells have a reduced level of RNA

(Hewitt et al. 2005). Vacuolar Pi has been remobilised, carbohydrates such as starch

and sugars have been accumulated and anthocyanin has been produced. In addition,

some plants may have begun processes of senescence or flowering (Morcuende

et al. 2007).

The hypothetical transcriptional response of plants to P re-supply or upon

discovery of a P resource in a heterogeneous environment would be to reverse

many of these changes and we consider that this response will take several forms:

1. Initially, there is an immediate non-specific response to perturbation of the

system, which is likely to be rapid and transient and shows typical characteristics

of other perturbation responses, involving increased expression of genes that are

likely to protect plants against abiotic and biotic stresses (AbuQamar et al.

2009). It has previously been suggested that these may be cell-autonomous

and related to changes in cell membrane potential, initiating cytosolic Ca2þ

signalling cascades (Hammond et al. 2003; Amtmann et al. 2006). There is

considerable crosstalk between abiotic and biotic signalling pathways, and these

are often integrated in the cytosolic Ca2þ signature.

2. Sensing of altered P availability and initiation of regulatory cascades, which will

not necessarily be a reversal of those cascades initiated upon P starvation. These

responses are also rapid, occurring within 30 min of P re-supply (Amtmann et al.

2006). Although many of these responses are regulated systemically by sucrose

concentration in P-deficient plants, upon re-supply of P the necessary gene

cascades change regulation far in advance of any changes in sucrose content,

suggesting other signalling pathways (Amtmann et al. 2006).

3. Reversal of tissue P economy. Morcuende et al. (2007) demonstrated that upon P

re-supply there is rapid (<3 h) upregulation of nucleic acid synthesis to promote

growth and re-optimise metabolic pathways for energy production and reversal

of sulfolipid and galactolipid synthesis, to allow sulfur to become available for

protein synthesis.
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4. Reducing energetic investment in costly P-tolerance mechanisms. Morcuende

et al. (2007) demonstrated that expression of genes regulating root growth,

organic acid and phosphatases synthesis and efflux are also rapidly downregu-

lated upon P re-supply.

5. Upregulation of mechanisms to prevent Pi toxicity such as sequestration and

complexation, due to the persistence of Pi-transport proteins.

Results from our own c-DNA microarray experiments, in which A. thaliana was
grown in P-deficient conditions then re-supplied with P, generally support these

hypotheses of the response of P-starved plants to P re-supply. There was a distinct

time-dependent response in the roots (Table 10.1) but this time dependence was not

obvious in the leaves (data not shown). Most transcripts reacted after 3 h. Some

transcripts increased initially and decreased within 24 h. In the first 45 min of P re-

supply, the largest proportion of genes differentially regulated are associated with

initiating cell production and include genes associated with cell function (3.5%),

DNA synthesis (5.2%), protein degradation and synthesis (8.4%), RNA processing

and regulation (2.7%) and amino acid metabolism (1.3%). After 3 h of re-supply of

P, many of the same genes are still differentially regulated but a number of other

processes have started to occur, notably cascades involved in cell wall development

and lipid metabolism (3.1%), signalling cascades (8.8%) and sulfur assimilation

(4.8%), most likely promoting protein synthesis. Beyond this, and between 0.5 and

2 days after re-supplying P, while the RNA processing, protein metabolism and cell

division pathways are still differentially regulated, the DNA synthesis genes have

equilibrated and differential regulation of signalling cascades has moderated.

Interestingly, it is only at this stage that abiotic stress genes are differentially

regulated, much later than anticipated in the hypotheses. It is also at this stage

that we see genes involved in carbohydrate metabolism and transporters differen-

tially regulated.

So, from this single study it is apparent that the earliest responses of plants to P

re-supply is to upregulate cellular molecular machinery, which is quickly followed

by cell division and lipid and protein biosynthesis. It is only later that the plant

shows a generic stress response and upregulation of specific signalling cascades and

P transport. The key result from this and other studies is that the vast majority

(~35%) of differentially regulated genes at all time points are of unknown origin,

which means that there are a lot of response mechanisms and regulatory cascades

associated with P re-supply that are yet to be understood.

10.5 Can P Starvation and Re-supply Responses

Be Genetically Manipulated for Agricultural Benefit?

Increased pressure on P fertiliser usage and costs due to the depletion of non-

renewable natural resources (Heffer et al. 2006; Cordell et al. 2009; Gilbert 2009),

their potential negative impacts on local environments and water quality (White and
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Hammond 2008), and the energy required and carbon dioxide evolved in their

production and use (Helsel 1992; Jenssen and Kongshaug 2003), have increased the

need to manage P fertiliser input more carefully. Over 85% of P mined is used in

food production (Heffer et al. 2006) and peak P production (akin to peak oil) is

estimated to occur by 2033 (Raven 2008; Cordell et al. 2009). These pressures will

be exacerbated by increasing demand on food production systems as the human

population increases, and by fluctuation in oil prices (Cordell et al. 2009). The

breeding of new crop varieties that yield well with reduced P fertiliser inputs is now

a priority for sustainable agriculture in the future.

Breeding crops that acquire and/or use P more efficiently is one strategy to

reduce the use of P fertilisers. Such crops could produce comparable yields with

lower inputs of inorganic Pi fertilisers or have reduced physiological P require-

ments and tissue P concentrations, thus reducing the amount of P removed by the

crop and, thereby, the amount of P needed to maintain the availability of Pi in the

soil. New varieties can be bred conventionally, based on trait-focused screens of

germplasm collections. However, a great deal of information is now available about

how plants regulate P homeostasis and acquisition from the soil, particularly at the

genetic level (Franco-Zorrilla et al. 2004; Jain et al. 2007b; Hammond and White

2008; White and Hammond 2008: Fang et al. 2009; Lin et al. 2009). Mutants with

allelic variation and/or altered expression of genes affecting P acquisition or P use

within the plant have been generated. Several of these mutants illustrate strategies

for developing crop plants that acquire and/or use P more efficiently.

Mutations that improve P acquisition from the soil could improve crop growth

when P availability in the soil is poor. Transgenic plants that secrete microbial

phytases into the rhizosphere have the potential to release P from inositol phosphates

and show enhanced growth and P nutrition when inositol hexaphosphate is the major

source of P (Richardson et al. 2001; Mudge et al. 2003; Zimmermann et al. 2003;

George et al. 2004, 2005a). However, when grown in most soils, these plants have

comparable growth and P nutrition to control plants (George et al. 2004, 2005b).

Similarly, overexpression of a bacterial gene encoding citrate synthase in tobacco

has been reported to increase citrate efflux from roots and to increase the availability

of P from Ca-P (de la Fuente-Martı́nez et al. 1997; López-Bucio et al. 2000), but an

effect on plant growth and P acquisition is not always observed (Delhaize et al.

2001). The expression of a wheat malate transporter gene (ALMT1) in barley has

been shown to be effective in increasing P uptake by transgenic plants, but only in

severely acidic soil conditions (Delhaize et al. 2009). Increased expression of

specific phosphate transporters has been shown to increase biomass accumulation

in tobacco cell cultures under P-limiting conditions (Mitsukawa et al. 1997), but did

not enhance P uptake rates or growth of transgenic barley in soil (Rae et al. 2004).

Mutations altering root morphology also have the potential to enable plants to

acquire more P. For example, barley genotypes with long root hairs have higher

yields than genotypes with no root hairs on soils with low P availability (Brown et al.

2010), and genotypes of bean, maize and brassica with larger root systems have

better growth under P-limiting conditions (Rubio et al. 2003; Liu et al. 2004;

Hammond et al. 2009). The overexpression of miR399, or the downregulation of
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UBC24 (pho2) expression, results in greater accumulation of P (Delhaize and

Randall 1995; Aung et al. 2006; Bari et al. 2006; Chiou et al. 2006). A T-DNA

insertional knockout of AtSIZ1 caused Arabidopsis to exhibit exaggerated Pi star-

vation responses, including cessation of primary root growth, extensive lateral root

and root hair development, increase in root/shoot biomass quotient, and greater

anthocyanin accumulation, even though intracellular Pi levels in siz1 plants were

similar to those in the wild type. All three mutants exhibit constitutive P-deficiency

symptoms, including increased P uptake, which might be beneficial in some agricul-

tural systems.

Mutations that improve crop growth when soil P availability is low, through better

physiological utilisation of P, may also be useful in breeding crops for reduced P

inputs. For example, OsPTF1, a bHLH transcription factor from rice, whose expres-

sion increases in the roots of P-starved plants, has been shown to enhance tolerance to

P starvation (Yi et al. 2005). Also, transgenic tobacco cells that lack an alternative

oxidase had improved growth under P-limiting conditions (Parsons et al. 1999).

10.6 Concluding Remarks

Management of soil P remains a crucial issue for the economic and environmental

sustainability of agriculture and natural ecosystems globally. It is therefore essen-

tial that we have appropriate understanding of the mechanisms by which plants are

able to acquire P from soil. In this chapter, various processes and physiological

traits of plants that facilitate the availability and acquisition of P from soil have

been outlined and some possibilities for deploying these traits into agricultural

germplasm discussed. Better understanding of these processes and development of

improved germplasm may ultimately improve the P-use efficiency of agriculture

systems and provide valuable information for wider-scale land and resource man-

agement. However, at present it is evident that the full extent of the complexity of

the gene-by-gene, and gene-by-environment interactions that are associated with

plant P nutrition are not well appreciated, and that our comprehension of the

functional redundancy and compatibility of different mechanisms both within

individual plants and between coexisting organisms is poor. It is therefore impor-

tant that a systems approach to P management continues to be developed for a more

sustainable agriculture.
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